

# Predicting imminent disease progression in advanced colorectal cancer by a machine-learning algorithm

# Background

In advanced cancers, predicting disease progression before its Basic prediction potential of the tumor markers was examined by current methods: clinical manifestation enables an earlier switch to the next Receiver operating characteristic (ROC) analysis on marker treatment line prior to deterioration in the patient's state, values monitored in-treatment (Fig. 2); potentially improving survival. Yet, at present, serum tumor ROC-derived classification trees tested in a leave-one-out markers such as carcinoembryonic antigen (CEA) are poor cross-validation process (Tab. 2); the marker value threshold indicators even of the current tumor state, and certainly cannot was set to approximate 90% specificity. be used for forecasting future outcomes such as progression<sup>1,2</sup>.

We developed a machine-learning algorithm alerting to approaching disease progression in patients with **Colorectal Cancer (CRC), using longitudinal** tumor marker input.

# **Methods & Results**

Two types of datasets containing advanced CRC patients under standard-of-care 1<sup>st</sup> line treatment were collected (Tab. 1):

- Clinical study data obtained from control arms of 3 trials (FL-4/6, FL-Pan; derived from projectdatasphere.org);
- Real-world evidence obtained from Hadassah Medical Center (HNAC)

| (11110)).                                                                                                                                                                 | Data type                           | Clinical studies           |             | Hospital-registry |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|-------------|-------------------|--|--|
| Table 1 Data                                                                                                                                                              | Dataset (acronym)                   | FL-4/6                     | FL-Pan      | НМС               |  |  |
| characteristics. Patients                                                                                                                                                 | Study (NCT identifiers)             | NCT00272051<br>NCT00305188 | NCT00364013 | NCT02577627       |  |  |
| were eligible for the                                                                                                                                                     | Number of patients                  |                            |             |                   |  |  |
| study if their individual                                                                                                                                                 | Total patients                      | 756                        | 935         | 132               |  |  |
| data contained                                                                                                                                                            | Study-eligible patients             | 489                        | 729         | 92                |  |  |
| sufficient tumor<br>response assessments                                                                                                                                  | Age                                 |                            |             |                   |  |  |
| and tumor marker                                                                                                                                                          | Median, years (range)               | 62 (22-83)                 | 62 (27-82)  | 62 (24-89)        |  |  |
| measurements (as                                                                                                                                                          | Gender                              |                            |             |                   |  |  |
| detailed in box below).                                                                                                                                                   | Male / Female                       | 283 / 206                  | 471 / 258   | 52 / 40           |  |  |
|                                                                                                                                                                           | Treatment                           |                            |             |                   |  |  |
| <ul> <li>Excluded patients:</li> <li>Patients with less than 2<br/>tumor response assessments</li> <li>Patients with less than 3<br/>tumor marker measurements</li> </ul> | FOLFOX                              | 489                        | 371         | 16                |  |  |
|                                                                                                                                                                           | FOLFOX + Panitumumab                | -                          | 358         | 2                 |  |  |
|                                                                                                                                                                           | FOLFOX + Bevacizumab                | -                          | -           | 24                |  |  |
|                                                                                                                                                                           | FOLFIRI +/- Bevacizumab             | -                          | -           | 14                |  |  |
| Excluded data:                                                                                                                                                            | Other regimens                      | -                          | -           | 36                |  |  |
| <ul> <li>Early tumor marker</li> </ul>                                                                                                                                    | Tumor assessments                   |                            |             |                   |  |  |
| measurements (<1 month                                                                                                                                                    | Progression events                  | 175                        | 251         | 32                |  |  |
| <ul> <li>after treatment onset)</li> <li>Late tumor marker</li> </ul>                                                                                                     | Non-progression events              | 741                        | 1818        | 142               |  |  |
| measurements (post 1 <sup>st</sup> line                                                                                                                                   | Follow-up until progression         |                            |             |                   |  |  |
| treatment)                                                                                                                                                                | Median, months                      | 5.6                        | 6.7         | 6.3               |  |  |
| <ul> <li>Treatment periods with</li> <li>sparse tumor marker</li> </ul>                                                                                                   | Number of tumor marker measurements |                            |             |                   |  |  |
| measurements (>3 month                                                                                                                                                    | CEA                                 | 1047                       | 2400        | 313               |  |  |
| between measurements)                                                                                                                                                     | CA19.9                              | -                          | -           | 224               |  |  |
|                                                                                                                                                                           |                                     |                            |             |                   |  |  |

**References:** [1] Accordino MK et al. J Oncol Pract 2016;12(1):65-6, e36-43. [2] Holdenrieder S et al. Biomed Res Int. 2016; 9795269. [3] Kogan Y et al. J Clin Oncol 36, 2018 (suppl; abstr e21190).

Yuri Kogan<sup>1</sup>, Moran Elishmereni<sup>1</sup>, Marina Kleiman<sup>1</sup>, Shmuel Shannon<sup>1</sup>, Larisa Aptekar<sup>1</sup>, Eldad Taub<sup>1</sup>, Hovav Nechushtan<sup>2</sup>, Zvia Agur<sup>1</sup>

<sup>1</sup> Optimata Ltd. Israel, <sup>2</sup> Hadassah Medical Center, Israel

**Can Tumor Marker Values Directly Predict Progression?** 

Across the various datasets, CEA and CA19.9 values alone had poor predictive ability for progression (Fig. 1, Tab. 2).



Figure 1. Tumor marker values as weak indicators for progression. ROC curves show the correlation between marker values and upcoming progressive disease (RECIST 1.1) in CRC patients. Sensitivity at points of 90% specificity is marked. AUC - area under curve.

| Table 2. Poor                                                            | Dataset       | FL-4/6 | FL-Pan | НМС   | НМС    |
|--------------------------------------------------------------------------|---------------|--------|--------|-------|--------|
| performance of                                                           | Markers       | CEA    | CEA    | CEA   | CA19.9 |
| tumor marker<br>value-based<br>classificationStrees.<br>Fach classifierC | Sensitivity   | 20.3%  | 28.1%  | 31%   | 37%    |
|                                                                          | Specificity   | 90%    | 89.9%  | 89.5% | 90%    |
|                                                                          | Cohen's Kappa | 0.12   | 0.2    | 0.23  | 0.29   |

was derived from ROC analysis using one marker.

## With current methods, tumor markers carry weak signals and are not useful for indicating approaching progression

## **Algorithm Architecture**

The algorithm was designed to process longitudinal tumor marker(s) and predict progression up to 3 months prior to radiological detection.

- Modeling approach: machine-learning using an R platform.
- Training: the Random Forest algorithm was trained using dynamic tumor marker features as input, and tumor assessment records (evaluated by RECIST 1.1) as output.
- **Testing**: leave-one-out cross-validation on the same dataset or separate testing on another dataset were performed, accuracy being evaluated separately for each test set.

Table 3. Algorithm performance metrics after training/testing on clinical study CRC data.

The clinical dataset-trained algorithm shows good performance also in real-world data (Tab. 4). Independent Testing Table 4. Algorithm testing on CRC patients in the Hadassah registry.

The algorithm uses simple, accessible, low-cost markers, and **enhances their** value for predicting progression

Combining CEA and CA19.9, the algorithm anticipates progression events at a high accuracy level (Tab. 5). Cuase Validation Table 5. Algorithm performance metrics in CRC patients using CEA and CA19.9 data.



### **Development of the Algorithm**

Trained only on CEA values, the algorithm accurately pinpointed the majority of progression events in the clinical datasets (Tab. 3).

|                          | <b>Cross-Validation</b> |        | Testing |        |                                          |
|--------------------------|-------------------------|--------|---------|--------|------------------------------------------|
| Training dataset         | FL-4/6                  | FL-Pan | FL-4/6  | FL-Pan | % of progression<br>events accurately    |
| Testing dataset          | FL-4/6                  | FL-Pan | FL-Pan  | FL-4/6 | <b>predicted</b><br>(out of all observed |
| ensitivity               | 57%                     | 52%    | 68%     | 51%    | progression<br>events)                   |
| pecificity               | 88%                     | 90%    | 77%     | 93%    | → % of non-progression                   |
| sitive Predictive Value  | 64%                     | 54%    | 40%     | 72%    | events accurately<br>predicted           |
| egative Predictive Value | 84%                     | 90%    | 92%     | 83%    | (out of all observed<br>non-progression  |
| ccuracy                  | 79%                     | 83%    | 76%     | 81%    | eventsj                                  |
| ohen's Kappa             | 0.46                    | 0.43   | 0.35    | 0.48   |                                          |

The algorithm signals imminent progression at high specificity and sensitivity, and can prompt a timely switch to next line therapy

The algorithm predicts progression at a suitable time prior to clinical detection

#### Validation of the Algorithm

| Training dataset          | FL-4/6 | FL-Pan |
|---------------------------|--------|--------|
| Testing dataset           | НМС    | НМС    |
| Sensitivity               | 70%    | 58%    |
| Specificity               | 81%    | 88%    |
| Positive Predictive Value | 53%    | 61%    |
| Negative Predictive Value | 90%    | 87%    |
| Accuracy                  | 78%    | 81%    |
| Cohen's Kappa             | 0.46   | 0.47   |

#### **Multiple-Marker Algorithm**

The algorithm can combine multiple tumor markers to produce an **even** stronger progression signal (better accuracy)

|                           | Cross-Validation   |
|---------------------------|--------------------|
| Training/Testing dataset  | HMC (CEA + CA19.9) |
| Sensitivity               | 58%                |
| Specificity               | 92%                |
| Positive Predictive Value | 65%                |
| Negative Predictive Value | 90%                |
| Accuracy                  | 86%                |
| Cohen's Kappa             | 0.53               |





Figure 2. The concept underlying our algorithm. The algorithm provides an early alert of impending progression, allowing an earlier switch to 2<sup>nd</sup> line therapy, thus limiting the increase in tumor load, and ultimately extending survival of cancer patients.

# **Conclusions and Implications**

- By machine-learning, we created a new algorithm that amplifies weak signals from tumor markers monitored during treatment, to produce a strong alert of disease progression just before the tumor surges (Fig. 2).
- The algorithm-amplified ability of CEA to predict progression in CRC complements our recent findings in non-small cell lung cancer, where CEA integrated with 4 other markers provides 91% specificity and 66% sensitivity in predicting progression, surpassing the low capacity of each separate marker.<sup>3</sup>
- Similarly, adding more markers is expected to boost the prediction capacity of the current algorithm for CRC.
- By individually timing the therapy switch before disease deterioration, the algorithm can enhance the efficacy of 2<sup>nd</sup> line drugs, thus extending progression-free survival and overall survival rates in cancer patients (Fig. 2).
- The paradigm of algorithm-aided improvement of cancer treatment can also be applied to further lines of therapy (e.g. 3<sup>rd</sup> line drugs) and additional indications.