
Predicting Time to Castration Resistance in Hormone
Sensitive Prostate Cancer by a Personalization Algorithm
Based on a Mechanistic Model Integrating Patient Data

Moran Elishmereni,1,2 Yuri Kheifetz,2 Ilan Shukrun,2 Graham H. Bevan,3 Debashis Nandy,3

Kyle M. McKenzie,3 Manish Kohli,3* and Zvia Agur1,2*
1Institute for Medical Biomathematics (IMBM), Bene Ataroth, Israel

2Optimata Ltd., Bene Ataroth, Israel
3Mayo Clinic, Rochester, Minnesota

BACKGROUND. Prostate cancer (PCa) is a leading cause of cancer death of men world-
wide. In hormone-sensitive prostate cancer (HSPC), androgen deprivation therapy (ADT) is
widely used, but an eventual failure on ADT heralds the passage to the castration-resistant
prostate cancer (CRPC) stage. Because predicting time to failure on ADT would allow
improved planning of personal treatment strategy, we aimed to develop a predictive
personalization algorithm for ADTefficacy in HSPC patients.
METHODS. A mathematical mechanistic model for HSPC progression and treatment was
developed based on the underlying disease dynamics (represented by prostate-specific
antigen; PSA) as affected by ADT. Following fine-tuning by a dataset of ADT-treated HSPC
patients, the model was embedded in an algorithm, which predicts the patient’s time to
biochemical failure (BF) based on clinical metrics obtained before or early in-treatment.
RESULTS. The mechanistic model, including a tumor growth law with a dynamic power
and an elaborate ADT-resistance mechanism, successfully retrieved individual time-courses
of PSA (R2¼ 0.783). Using the personal Gleason score (GS) and PSA at diagnosis, as well as
PSA dynamics from 6 months after ADT onset, and given the full ADT regimen, the
personalization algorithm accurately predicted the individual time to BF of ADT in 90% of
patients in the retrospective cohort (R2¼ 0.98).
CONCLUSIONS. The algorithm we have developed, predicting biochemical failure based
on routine clinical tests, could be especially useful for patients destined for short-lived ADT
responses and quick progression to CRPC. Prospective studies must validate the utility of the
algorithm for clinical decision-making. Prostate # 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Prostate cancer (PCa) is the most frequently diag-
nosed cancer and the sixth leading cause of cancer
death in men worldwide. Over 30% of patients
progress from localized stage disease to advanced
stages over 10 years [1]. Chronic androgen depriva-
tion therapy (ADT) is often used as first-line treatment
to control relapse after progression, and for patients
diagnosed with metastatic hormone sensitive prostate
cancer (HSPC) [2]. ADT suppresses cancer growth by
depleting androgen and causing apoptotic regression
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of cancer cells dependent on androgen. This control of
PCa progression can last up to several years, until
resistance to ADT emerges, and transition to castrate
resistant prostate cancer (CRPC) becomes inevita-
ble [3]. In the United States more than one-third of
PCa patients undergo ADT at some point, making
ADT a significant public health burden due to its
adverse effects [4].

An increase in serum prostate-specific antigen
(PSA) levels under ADT often heralds disease
progression and treatment failure, yet PSA does not
help predict the clinical outcome [5]. In fact, today
there are no reliable clinical tools that accurately
predict ADT failure, in part, due to the large
heterogeneity in PSA dynamics among patients [5].
The quest for such methods has become even more
essential with the emergence of many novel tar-
geted therapies for HSPC: awareness of a shorter
time to progression on ADT may support clinical
decision to start novel therapy sooner, rather than
delay it to the CRPC stage [2]. To achieve maximal
therapeutic gain in HSPC, planning of ADT should
be based on predictive and reliable assays of its
efficacy in patients [2].

In this work, we aimed to develop a person-
alization algorithm predicting clinical outcomes in
HSPC patients under therapy, based on a mathe-
matical mechanistic model for PCa progression.
Mathematical models have been widely employed
to predict cancer progression and response to drugs
in populations (e.g., [6,7]), We have recently intro-
duced a new approach to PCa immunotherapy by
designing a mathematical modelling-based method-
ology to personalize an experimental vaccination
regimen during the initial part of the treatment [8,9].
Here, we have a different aim, namely, to design a
method for predicting the response to the standard
of care ADT in the individual PCa patient. This aim
requires a different methodology and, importantly,
relies on the availability of larger clinical databases.
Thus, using a hospital-based cohort of HSPC patients,
we applied an iterative approach combining non-
linear mixed-effect modeling (NLMEM) and dynamic
mechanistic modeling for predicting the individual
PSA profiles and clinical outcomes in ADT-treated
HSPC patients.

METHODS

Clinical Data

Information was derived from an advanced stage
PCa registry established at Mayo Clinic, consisting of
520 patients recruited between September 2009 and
December 2013. An institutional review board

approved access to the de-identified medical records.
Patients underwent clinically indicated ADT for
HSPC and other treatments for CRPC at Mayo Clinic,
and were followed according to the standard of
care by individual practitioners experienced in the
treatment of advanced PCa. The dataset included
basic patient characteristics, full blood biochemistry
(with PSA measurements before, during, and after
ADT initiation), Gleason score (GS) and Tumor,
Nodes, Metastases (TNM) staging at diagnosis, and
details of all administered treatments from the time
of diagnosis. Available clinical outcomes in these
patients included time to biochemical failure (BF) on
ADT (defined as two consecutive rises in PSA, at
least 1 week apart, according to the clinical standards
for biochemical progression [10]), time of CRPC
progression (herein defined as the definitive start of
chemotherapy after failure of ADT), and survival
status.

Patients from the full dataset were stratified by
disease stage: those with HSPC treated by ADT,
including patients with disease recurrence after
primary therapy for localized PCa, were selected as
a subset for the present analysis. Criteria for
exclusion from this group included fewer than 10
PSA measurements during the HSPC period, or
overall PSA dynamics not exceeding 1 ng/ml. This
screening resulted in a final subset of n¼ 83
patients (basic descriptors for this cohort are listed
in Table I). The applied ADT treatments during the
HSPC stage included luteinizing-hormone-releasing
hormone agonists and antagonists, with or without
anti-androgens, or surgical bilateral orchiectomy
(Supplementary Table SI). Longitudinal PSA profiles
were assessed from time of HSPC onset (defined as
the time of biochemical recurrence or radiological
progressive disease after primary therapy for local-
ized PCa, whichever came first), and until time of
progression to CRPC or until the last follow-up
date (in patients who had not yet progressed to
CRPC); the HSPC window is demonstrated in an
example PSA profile of a representative patient
(Fig. 1). The median time of HSPC follow-up was
3.6 years (Table I). R programming and Excel were
used for data analysis.

Mathematical Mechanistic HSPC Model

The mathematical model of HSPC progression
and treatment was developed by an iterative cycle
of modeling (designing several different variations
of ODE formulations for the ability to retrieve
longitudinal PSA profiles in HSPC patients), simu-
lation, fitting to data (comparison of simulated to
clinically-observed PSA profiles), and modification
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for improved retrieval of the data. The final goal
was to obtain the simplest model that could retrieve
the PSA dynamics in HSPC patients over a sub-
stantial time period. The resulting data-adjusted

mechanistic model includes two main components:
disease model, describing the dynamics of serum
PSA levels taken as proportional to the tumor
volume [5]; pharmacodynamics (PD) model of ADT
(surgical or medical castration;[11]), which indi-
rectly suppresses androgen levels (represented by
testosterone). The model also includes the emer-
gence of ADT resistance during HSPC, whereby
PCa progresses even in the presence of sub-castrate
levels of androgen; this resistance depends both on
androgen receptor (AR)-dependent and independ-
ent mechanisms [12,13].

We describe the dynamics of PSA in HSPC by a
power growth law with linearly growing power
coefficient K:

dPSA
dt

¼ p0 �min
ln 2ð Þ
g

; l1 � PSAK
� �

ð1Þ

dK
dt

¼ l2

Here, the parameters l1 and l2 stand for the instanta-
neous rates of increase of PSA and K, respectively;
parameter g sets a biologically realistic upper limit on
PSA growth. The model also includes PCa dormancy,
i.e., periods of significantly reduced PSA growth, as
often observed in patients. Thus, when PSA is lower
than a given threshold pt, parameter p0 becomes

TABLE I. Descriptors for the HSPC Patient Cohort

Hormone-sensitive PCa patients (n¼ 83) N %

Age (years), median (range) 66 (43–88)
BMI, median (range) 29.8 (21.5–41.9)
Stage at diagnosis, localized PCa/advanced hormone-sensitive PCa 50/33 60/40
PSAa at diagnosis (ng/ml), median (range) 18 (2–3,163)
Gleason scoreb at diagnosis, median (range) 7 (4–9)
Patients with Gleason scoreb 8–10/�7 38/41 46/49
Stage M at diagnosis: M0, M1, Mx 23/15/45 28/18/54
Patients on primary therapy for localized PCa (RP/RT) 40/19 48/23
PSA at HSPC onset (ng/ml), median (range) 0.6 (0.1–950)
HSPC follow up time (years), median (range) 3.6 (0.5–17.7)
Patients with biochemical failurec (BF) on ADT 21 25
Time to BF on ADT (years), median (range) 3.4 (1.1–8.2)
Patients that progressed to castration-resistant PCa (CRPC)d 49 59
Time to CRPC (years), median (range) 3.4 (0.5–17.7)
Patients alive/deceased 60/23 72/28
Time to death (years), median (range) 5.8 (1.3–18.4)

PCa, prostate cancer; ADT, androgen deprivation therapy; PSA, prostate-specific antigen.
aPSAvalue unlisted for n¼ 20 pts.
bGleason score value unlisted for n¼ 4 pts.
cBiochemical failure on ADT defined as two consecutive rises of PSA during ADT.
dCRPC diagnosis/onset time defined as start of chemotherapy administration.

Fig. 1. HSPC period of a typical PCa patient’s PSA profile. An
example PSA profile of a representative patient in the clinical
registry dataset is displayed, from the time of diagnosis and until
advancement into CRPC. The HSPC onset is defined as the time
of biochemical recurrence or radiological progressive disease
after primary therapy (e.g. radiation therapy; RT) for localized
PCa, whichever came first; The HSPC period ceases upon
progression to CRPC (signaled here by chemotherapy; CHT), or
until the last follow up date (in patients who had not yet
progressed to CRPC). The HSPC period consists of at least one
administration of androgen deprivation therapy (ADT).
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smaller than unity so that PSA grows considerably
more slowly:

p0 ¼
1; PSA > pt

pþ 1� pð Þ � PSA
pt

� �
; PSA � pt

8><
>:

ð2Þ

where parameter p is the steepness coefficient of the
continuous function.

For simplicity, we assumed that the change in
testosterone (TES) from its homeostatic levels affects
PSA linearly, redefining Equation (1) as:

dPSA
dt

¼ p0 �min
ln 2ð Þ
g

; l1 � PSAK
� �

þ pd1 � TES� 1ð Þ

�max 0;PSA� pt
2

� �

ð3Þ

where the testosterone level is normalized and
parameter pd1 is the rate coefficient for the influence
of TES change on PSA levels. This effect is propor-
tional to PSA levels, and is limited by the half-value
of the PSA threshold.

The impact of ADTon testosterone is described by:

dTES
dt

¼ dTES
1þ pd3 �H � dTES � TES ð4Þ

dADT
dt

¼ �d1 � ADT ð5Þ

dH
dt

¼ ADT � d1 �H ð6Þ
In Equation (4), the dynamics of TES are described

by its secretion and removal, parameter dTES indicat-
ing the instantaneous rate of change in the levels of
testosterone. ADT represents any administered hor-
mone deprivation therapy, and its delayed inhibitory
effect on TES production is achieved by an intermedi-
ate factor H (e.g., bound AR). Thus, H rises as a direct
function of ADT and inhibits TES production in a
saturated manner at the rate pd3. ADT and H are both
cleared at the rate d1.

The model allows for the emergence of resistance
to ADT:

dRES1
dt

¼ b1 � ADT ð7Þ

where b1 is the intrinsic rate of change in the level
of resistance per drug unit. To describe the effect of
resistance process on TES, Equation (6) must be
redefined:

dH
dt

¼ ADT � d1 � eRES1

1þ eRES1
�H ð8Þ

so that RES1 increases degradation of H in a saturated
manner, allowing the ADT resistance to interfere with
the ADT inhibition of testosterone.

To account for resistance independent of the testos-
terone-AR pathway, the model includes a second
resistance effect, RES2:

dRES2
dt

¼ b2 � ADT ð9Þ

with b2 as its growth coefficient. This mechanism,
describing the direct influence of ADT-associated
resistance on PSA, is now incorporated in the PSA
function (Equation 3) so that it becomes:

dPSA
dt

¼ p0 �min
ln 2ð Þ
g

; l1 � PSAK
� �

þpd1 � TES� 1ð Þ þ pd2 � RES2ð Þ �max 0;PSA� pt
2

� �

(11)

Parameter pd2 is the coefficient through which RES2
increases PSA growth.The complete system of ODEs
is given by:

dPSA
dt

¼ p0 �min
ln 2ð Þ
g

;l1 � PSAK
� �

�max 0; lPSA � PSAð Þ
lPSA

þ

þpd1 � TES� 1ð Þ þ pd2 � RES2 �max 0; lPSA � PSAð Þ
lPSA

� �
�max 0;PSA� pt

2

� �

dK
dt

¼ l2;

dTES
dt

¼ dTES
1þ pd3 �H � dTES � TES

dADT
dt

¼ �d1 � ADT

dH
dt

¼ ADT � d1 � lh � e
RES1

lh þ eRES1
�H

dRES1
dt

¼ b1 � ADT �maxð0;lres1�RES1Þ
lres1

dRES2
dt

¼ b2 � ADT �maxð0;lres2�RES2Þ
lres2

ð11Þ

where lPSA, lh, lres1, and lres2 are biologically reason-
able limitation constants on PSA, H, RES1, and RES2,
respectively.

Model initial conditions. Initial conditions for the
full model system described in Equation (11) were
defined as follows: For flexibility, the initial value of
PSA, which is individualized per patient, was opti-
mized to be close to the baseline PSA measurement.
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Thus:

PSAð0Þ ¼ x0 � PSAb ð12Þ

where PSAb is the individual baseline value of PSA,
parameter x0 is a random variable log normally
distributed between 0 and vx0, with a median value of
1, as given by

x0 � eNð0;vx0Þ ð13Þ

with v being optimized individually.
The initial value of the power coefficient K, i.e.,

parameter a, was also evaluated from the data,
whereas the other variables assume constant initial
conditions:

K(0)¼a, TES(0)¼ 1 ADT(0)¼ 0, H(0)¼ 0, RES2(0)
¼ 0, RES1(0)¼ 0

The model was implemented on a NLMEM plat-
form, and parameters were estimated via the stochas-
tic approximation expectation maximization (SAEM)
Monte-CarloMarkov Chain (MCMC) procedure [4,14].
Model agreement with data was evaluated by several
criteria, including goodness-of-fit plots, low negative
log-likelihood (nLL) values, low Akaike Information
Criterion (AIC) values, low relative standard errors
(RSE) of parameter estimates, and low condition
numbers (CN). Clinical metrics were tested by regres-
sion analysis for inclusion as discrete covariates
associated with model parameters. See elaborate
description of these methods in the Supplementary
Material, section A.

Algorithm-Based Prediction of Biochemical
Failure

To predict the time to BF of individual patients
after ADT onset, we developed an algorithm that uses
personal clinical metrics and the mechanistic HSPC
model to forecast patient-specific PSA dynamics. The
algorithm, implemented in Matlab employing the
MCMC method with the stiff odes15s solver, was
applied to the cohort’s patients. Input data for each
patient included GS and initial PSA levels (at diag-
nosis), PSA measurements at a pre-defined early time
period from the ADT onset (i.e. 6 months), and the
ADT regimen applied to the patient over the complete
follow-up period. Based on the parameter distribu-
tions of the population (estimated using data of the
full cohort), the algorithm estimated the individual
distributions of parameters by MCMC: Fixed parts of
individual parameters were estimated according to
the regression models on the clinical variables. The
random parts of the parameters were sampled accord-

ing to the SAEM algorithm using Bayesian infer-
ence [15].

For each patient, 1,000 simulations (each varying in
its sampled individual parameter values) were per-
formed. The BF events, as defined above, were
extracted from the observed PSA levels, and com-
pared to those in the simulations. A BF event was
predicted for a patient only if confirmed in the
majority of the simulations (i.e. over half of them; 500
simulations). Comparison of predicted and observed
time to BF was made over the whole cohort. It
included evaluation of matching BF events and their
accuracy, as well as mismatches: predicted BF events
that did not occur (false positives) and actual BFs that
were not predicted (false negatives).

RESULTS

Our mathematical mechanistic model adequately
described PCa disease progression and response to
ADT in HSPC. This minimum model consists of a
tumor growth law with escalating growth rate, and
emergence of resistance to ADT by two different
biological mechanisms operating on two different
time scales (Fig. 2). This model retrieved well the
overall PSA dynamics in 83 HSPC patients under
long-term follow-up (R2¼ 0.783, residual error of
0.576; Fig. 3A). Given the large differences in the PSA

Fig. 2. Scheme of the mechanistic HSPC model. The ODE
model for tumor progression in HSPC patients describes the PCa
surrogate marker prostate-specific antigen (PSA), which grows by
a power law with a variable coefficient (K). PSA is controlled by
the level of androgen, represented by testosterone (TES).
Intervention by chemical or surgical castration, collectively
termed androgen deprivation therapy (ADT), reduces the levels
of TES indirectly, involving an intermediate factor (H). Concom-
itantly, ADT instigates the rise of resistance (RES1) which
interferes with its efficacy by reducing H levels. A second ADT-
induced resistance effect (RES2) acts to increase PSA levels
directly.
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Fig. 3. Retrieval of individual PSA profiles by the mechanistic HSPC model. (A) Calibration of the mechanistic mixed-effects model using
a dataset of longitudinal PSA profiles followed up during the HSPC stage in n¼83 PCa patients treated with ADT by diverse regimens.
Goodness of fit plot, showing observed and model-fitted PSA values as log-transformed. (B) Model-fitted PSA profiles of 8 representative
HSPC patients; observed PSA measurements (circles) are shown across model simulations (solid lines), with vertical lines indicating ADT
administration times.

6 Elishmereni et al.

The Prostate



ranges among the patients, it was necessary to assume
inter-individual variability in at least nine model
parameters in order to capture the heterogeneous PSA
dynamics (Supplementary Table SII). Individual
model-data fits for eight representative patients dem-
onstrate the quantitative and qualitative accuracy of
model simulations (Fig. 3B).

Four model parameters were significantly associ-
ated with early clinical and pathological variables:
PSA growth rate coefficient l1 and the inverse
growth limitation parameter g were significantly
correlated with the patient’s GS (direct and inverse
correlations, respectively). Likewise, resistance rate
parameters were correlated to the PSA level at
diagnosis (Supplementary Material, section A,
Table SII). In a separate analysis, we also found that
some of the mechanistic model parameters are
potentially predictive factors for late clinical out-
comes in HSPC patients, namely progression to
CRPC and death: statistical time-to-event models
(semi-parametric Cox PH and parametric regres-
sions) surfaced a significant correlation between the
PSA growth rate parameter l1 and the ADT effect
clearance rate parameter d1, and time to CRPC
onset and overall survival (Supplementary Material,
section B).

We implemented the model in the personalization
algorithm, and tested its power in predicting time to
BF under ADT (a common defining event occurring
toward progression to CRPC [16]) in individual
patients. The personalization algorithm, employing
the Bayesian approach, calculated personal model
parameters using significant clinical metrics collected
prior to treatment. It then simulated the personalized
model to extract the patient’s time to BF from the
simulated PSA dynamics (Fig. 4A). Since some of the
model parameters (i.e., p, g, and l1) were difficult to
identify (as indicted in the RSE and CI of population
values; Supplementary Table SII) due to the PSA
variability, the algorithm required as input also a few
PSA measurements collected over an initial period
after treatment onset, in order to produce adequate
curve fitting and better sampling of the conditional
individual parameters values (Fig. 4A). We tested the
ability of the personalization algorithm to retrieve the
time to BF in the original HSPC dataset (n¼ 83),
simulating the PSA dynamics of each patient under
his retrospective ADT regimen (including ADT appli-
cation times). Inputting the significant metrics (GS
and PSA at diagnosis) and initial PSA data collected
during the first 6 months after therapy initiation, the
model successfully predicted 90% of the BFs (19/21
matches, two false negatives). In the matched events,
the prediction accuracy of BFs was high (R2¼ 0.98;
Fig. 4B). The average difference between the observed

and predicted time to BF was only 67 days (SEM¼ 18;
range of 0–271 days). Four false positive events were
registered.

To examine whether the time to CRPC onset and
OS in HSPC patients could also be predicted,
statistical time-to-event models (both semi-paramet-
ric Cox PH and parametric regressions) were
applied to evaluate the association between mecha-
nistic model parameters and these two endpoints.
Univariate analysis revealed four model parameters
being significantly correlated (P< 0.05) with time to
CRPC by at least one regression model (Table II).
Particularly, the clearance rate parameter of the
ADT effect d1, and the PSA growth rate parameter
l1, were associated with a poor CRPC prognosis
(Table II), as exemplified also in the Kaplan–Meier
analysis (Fig. 4), and their prediction accuracy was
verified by both leave-one-out cross validation and
resampling (Table II). Importantly, l1 was signifi-
cantly correlated with OS, and a verified prognostic
factor for poor outcome (Table II, Fig. 4). An
independent analysis showed a number of clinically
evaluated metrics in the HSPC patients that were
also prognostic for time to CRPC and OS (see
Supplementary Material, section B).

DISCUSSION

An unmet clinical challenge in advanced PCa is the
lack of a validated robust assay that is reproducible
and reliable in predicting treatment response [5].
Today, multiple options are available for treatment of
advanced PCa, including novel immunotherapies,
hormone-based therapies, bone-targeted radioiso-
topes, and chemotherapies. As a result, matching
treatment modality to the patient has become chal-
lenging. Unfortunately, recent therapeutic advances
have occurred with no companion tools to evaluate
their potential therapeutic benefit in individual
patients. This deficiency has motivated the develop-
ment of an alternative approach for predicting the
response to ADT, based on a mathematical model-
based personalization algorithm integrating standard
clinical metrics.

The presented personalization algorithm focused
on the clinically meaningful goal of predicting BF
during therapy, after which patients are typically
evaluated for CRPC progression and treated by
therapeutics for this terminal stage. The algorithm
accurately predicted BF in the retrospective HSPC
cohort, by incorporating clinical information at diag-
nosis (GS and PSA), PSA collected during initial
monitoring at the HSPC stage, and the ADT regimen
actually applied to the patient. Notwithstanding the
remarkable precision of our predictions, these results

Predictive Algorithm for ADT Failure in HSPC 7

The Prostate



should be taken with some precaution: because
predictions of BF were validated retrospectively, the
contribution of different types of information input
cannot be evaluated at this stage. For example, the
number of false positive events may have been under-
estimated due to the nature of this retrospective
analysis: given that the simulated BF events were only

examined at the original PSA monitoring times (in
order to compare them to the observed BF events),
false positive events may have been overlooked in
periods of no monitoring. Moreover, in HSPC, the
ADT schedule is intertwined with the PSA sampling
schedule and, consequently, with the observed PSA
profile. In return, the observed PSA profile may

Fig. 4. Algorithm-predictions of biochemical failure in HSPC patients. (A) Scheme of the algorithm developed for simulating individual
PSA profiles and deriving time to BF, based on the mechanistic HSPC model. Personal data of the initial PSA levels in a given HSPC patient
(blue circles), and his individual covariate values (derived from the database; DB) and ADT regimen are input into the personalization
algorithm. The algorithm then estimates the patient’s individual parameter distributions using Bayesian inference, and simulates the
mechanistic model for predicting PSA dynamics (Black line; range of predictions in grey lines) and BF occurrence (triangle) in that patient.
(B) The algorithm’s predictions of BF events in the retrospective n¼83 HSPC subset, using the approach described in panel (A). The
matched algorithm-forecasted BF occurrences (19 events) are plotted vs. the observed BF events. An event is presented as time to BF in
each patient; R2 is displayed.
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feedback on the ADT schedule. Therefore, a more
accurate validation of the algorithm, done prospec-
tively, will tackle this aspect by applying standard-
of-care guidelines regarding ADT scheduling and
PSA sampling.

Previously, we have demonstrated the potential of
mathematical models to assist prediction of outcomes
in the individual cancer patient and personalized
planning of treatment, in the case of experimental
vaccination immunotherapy for a small cohort of
advanced PCa patients [8,9]. Using a simple mecha-
nistic mathematical model which “learns” the patient
during the initial treatment stage, and provides alter-
nate regimens that can be applied immediately, we
showed that a model-yielded treatment regimen
would have improved the response in a number of
patients [8]. The present work is another step
forward in model-aided prediction of patient out-
comes. By applying this strategy for an even larger
hospital-based cohort of PCa patients under ADT, and
by employing a more advanced modeling approach
combining NLMEM and mechanistic models to real-
ize this method, prediction of individual responses is
attainable and accurate.

The mechanistic model of HSPC progression
was developed by an integrative “bottom-up” and
“top-down” approach, whereby the model was iter-
atively constructed based on biological mechanistic
understanding of the system, and further adjusted by
clinical PSA dynamics. Our suggested model is the
minimal structure that could sufficiently well retrieve
the data. Hence, the mechanistic aspects of the model
represent the key processes underlying PCa dynamics
and the resulting PSA behavior in advanced HSPC
patients. In particular, the model highlights the com-
plex PCa growth law, the rate of which increases over
time. Indeed, it is acknowledged that the evolutionary
dynamics of cancer cell populations subjected to
therapy include ongoing selection of mutants that
progressively increase the overall growth capacity of
the population. The relatively long time periods over
which such evolutionary dynamics operate in HSPC
allow to discern these changes. Likewise, the emer-
gence of failure on ADT appeared to require relatively
complex modeling. Yet the fact that two mechanisms
suffice to describe the development of castration
resistance suggests that the multiple known biological
resistance mechanisms [12,13] may be overlapping in
function.

The mathematical mechanistic model may add
insight into the dynamics of the system, which cannot
be obtained by statistical analyses alone. Androgen
resistance parameters were highly correlated with
PSA level at diagnosis; this explains why the integra-
tion of PSA levels at diagnosis can aid in predicting

the timing of resistance onset, as exemplified in the
accurate BF prediction by the algorithm. Similarly, the
PSA growth rate parameter (l1) was associated with
GS, supporting the use of GS in determining the
individual growth rate parameters and its contribu-
tion to disease severity. Indeed, prior reports present
GS as an important prognostic measure for risk of
ADT resistance [16] and risk of mortality [17]. Our
mechanistic model-based algorithm thus extends the
information value of these clinical markers (GS and
initial PSA levels at diagnosis) beyond the past simple
prognostic interpretations, integrating them for accu-
rate prediction of the BF outcome.

The results of this work provide a proof-of-concept
of the presented algorithm, yet a prospective clinical
trial is mandatory for its clinical validation. In
addition, various ADT protocols (different agents;
different formulations; monotherapy or combination
therapy combining anti-androgens and steroids) need
to be implemented in the algorithm, and the ability to
predict their differential efficacy should be studied.
The algorithm must also consider inclusion of new
drugs (i.e., abiraterone acetate and enzalutamide),
which have shown promising response rates when
applied together with ADT for HSPC patients with
poor prognosis [5,18]. The use of our algorithm
should also be considered not only for predicting
early outcomes in individual HSPC patients, but also
for assisting to forecast time to CRPC and survival.
Given that prediction of such late outcomes in
patients is critical for planning appropriate treatment,
and realizing that biomarkers for these outcomes are
still lacking [5,11,19], the prospect of using the
algorithm to complement available prognostic
markers is highly intriguing. In this context, the
algorithm is adaptable to the dynamic biomarker
realm in PCa: biomarkers that will be validated as
having prognostic and predictive impact (e.g., circu-
lating tumor cells) [5], and likely to be increasingly
used within personalized PCa therapy in the years to
come, can be easily included into the algorithm as
covariates associated to dynamic model parameters,
for the purpose of enhancing the prediction accuracy.
Upon its prospective validation, the algorithm will,
hopefully, be employed as a navigation decision-
support tool for oncologists planning ADT or com-
bined chemohormonal therapies for HSPC patients.

CONCLUSIONS

We developed a personalization algorithm integrat-
ing clinical covariates with a mechanistic model for
disease progression and ADT in HSPC patients.
Predicting BF in a retrospective cohort of patients,
based on routine clinical tests, could serve as a useful
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tool for patients in this stage. In the future, this
approach will, hopefully, assist in combining ADT
with other novel therapies in patients destined to for
quick progression to castrate resistance on single
agent ADTalone.
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the online version of this article at the publisher’s
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